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The instability of a non-uniform vortex sheet 

By L. M. HOCKING 
University College London, Gower Street, W.C. 1 

(Received 9 May 1963) 

The classical Kelvin-Helmholtz problem of the instability of the vortex sheet 
between two uniform streams is extended to allow for non-uniformity in the 
streams. A small-wavelength approximation shows that the most unstable 
disturbances have a growth rate proportional to the greatest discontinuity of 
velocity at the vortex sheet. The solution for all wavelengths is found for two 
cases when the variation in the stream velocity is small compared with the stream 
velocity itself. One of these cases indicates that a transverse variation in the 
stream velocity can increase the instability for long wavelengths, but only to a 
small extent. 

1. Introduction 
Current interest in the behaviour of strong shear layers and vortex sheets 

has been stimulated by the leading edge vortex on a slender delta wing (Mangler 
& Smith 1959), and by the transition process in boundary-layer breakdown 
(Greenspan & Benney 1963). Flows of this kind are strictly three-dimensional, 
but a uni-directional and uniform velocity on either side of the layer or sheet is 
often used as a good local approximation. It is the purpose of this paper to discuss 
a slightly improved model, in which the flow is still uni-directional but non- 
uniform, and to find the effect of this non-uniformity on the instability of a 
vortex sheet. 

Viscosity is neglected throughout this paper. The justification of this procedure 
is that what is under consideration is an extension of the classical, inviscid 
Kelvin-Helmholtz problem, to provide an initial study of a more general problem. 
The instability of a vortex sheet is an inviscid type of instability and a small 
viscosity in the fluid may be expected to make only a small change in its behaviour. 
There may be other, viscous modes of instability present and it is possible that 
these may be more unstable than the inviscid modes, as Brooke Benjamin 
(1963) has shown to be the case in another problem. On both sides of the vortex 
sheet, the fluid will be assumed to be moving in accordance with the Navier- 
Stokes equations to ensure that, when comparison is made with the behaviour of a 
real fluid, it is only at the vortex sheet itself that viscous forces will modify the 
undisturbed flow. 

2. Analysis 
The first step is to derive the inviscid Orr-Sommerfeld equation for a velocity 

W(z ,  y) in the z-direction, where (2, y, z )  are Cartesian co-ordinates. In  accordance 
with the standard procedure, the disturbance is supposed to have a real wave- 
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number CL in the x-direction and complex wave velocity c so that the velocity dis- 
turbance has the form (u, v, w) exp {ia(x - ct)} ,  where u, v, w are functions of x 
and y and are small compared with W. With a similar form for the pressure p, 
the linearized equations of motion and the continuity equation are 

ia( W - c) u = -px /p ,  

ia( W - c )  v = -p,/p, 

ia(W-c)w+W,u+W,v = -iap/p, 
u,+v,+iaw = 0, 

p being the fluid density. Eliminating p and w, we obtain the two equations 

( w - c) (uss - a2u + v,,) - w,, u - w,,v - w, vx + w, vy = 0,  

( w - c )  (v,, - a2v + u,,) - w,,v - w,,u - wxu, + w,ux = 0. 

( 5 )  

(6) 

If W is a function of x only and v = 0, these equations reduce to the well-known 
inviscid Orr-Sommerfeld equation. 

For the particular problem of a vortex sheet, these equations must be solved 
on both sides of the sheet and the solutions matched by boundary conditions. 
To simplify the analysis, the value of the stream velocity on one side of the sheet 
will be assumed to be constant and, without further loss of generality, the fluid 
on this side can be taken to be at rest. The vortex sheet is in the plane x = 0 
and W(x,  y) now refers to the velocity of the stream in the region x > 0;  for x < 0,  
equations ( 5 )  and (6) hold with W = 0. 

The boundary conditions which must hold a t  the interface are continuity of 
normal velocity and pressure. I f  the displacement of the interface is 

x = [(y) exp {ia(z - ct)) ,  

the continuity of normal velocity requires that 

u- iawc = -iacc 

on both sides of the interface, or, in a form not involving c, 

The pressure can be found from (3) and the continuity of pressure condition is 

( W - c )  (u(i) + v$) - y,u(l) - W,v(l) = - c(u$ + v$)) at x = 0. (8) 

Superscripts 1 and 2 refer to the regions x > 0 and x < 0,  respectively 

3. Small-wavelength approximation 

the two possible values of c are 
When W is constant? the classical Kelvin-Helmholtz problem is obtained and 

(9) 
and the growth-rate of the disturbance is t a  W. It is worth noting that this has 
the same value when the disturbance has a v-component, i.e. when the distur- 

c = c,+ic, = 411 +i) W ,  
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bance is moving at  an angle to the main stream. For, if this angle is /?, the velocity 
in this direction is W cos /? and the wave-number is a sec so that aci is unaltered. 
This is, of course, simply a special case of Squire's theorem on three-dimensional 
disturbances. The classical result shows that the most unstable disturbances are 
those with large a, that is with small wavelength, and that the growth rate is 
proportional to the velocity discontinuity at the vortex sheet. This suggests that 
the solution in the more general case should be found for large a if the most 
unstable disturbances are required. 

With a large, the terms of order a2 in (5) and (6) are 

uzx-a2u+v~y = 0, 

v,,-a2v+ux, = 0, 

and these equations have solutions, which satisfy the conditions of finiteness 
as x and y tend to infinity, of the forms 

u(') = A(') exp ( - ks) cos my, 

d2) = A(2) exp (kx) cos my, 
v(') = A(l)(m/k) exp ( - Ex) sin my, 
d2) = A(2)( - m/k)  exp (kx) sin my, 

( 12) 

( 13) 

where k2 = m2+a2. Substituting these solutions in the conditions (7)  and (8) 

(14) 
gives 

Since this equation is independent of k ,  it holds for any combination of the solu- 
tions (12), and so for any acceptable solution of (10) and (11). Remembering 
that the asymptotic solution for large a is being sought, we see that (14) has 
the solution 

where 6 is the Dirac 6-function, provided 

(( w - c2) + c2) utqo, y) = 0. 

uC0(O, Y)  = S(Y -Yo), 

{W(0,y0)-c}2+c2 = 0. 

c = &(l* i) Wi, (16) 

&a max (Wi). (17) 

(15) 

The possible values of c are, therefore, 

where W i  = W(0,  yo), the value of W at the interface, and the greatest growth rate 
is 

The physical explanation of this result is clear. Consider a disturbance which 
is concentrated at  a position y = yo. Since the wavelength is very small any 
variation in the y-direction of the undisturbed flow will not be noticed and the 
disturbance will grow as if the whole stream were moving with the speed at the 
point (0, yo). Consequently, the largest growth rate will be the same as if the stream 
had a uniform velocity equal to its greatest speed at the interface. 

Consider a fixed wave-number a and suppose that at t = 0, the interface has 
a displacement t(y) exp (iaz). Then at  time t the displacement is 
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This result shows how an initial disturbance changes its form and that non- 
linear effects will first become important at the points where Wi has its greatest 
value. It is at such points that turbulent spots may develop in the final stage of 
boundary-layer breakdown, when strong shear layers have been observed (see 
Greenspan & Benney 1963). 

The reason why a continuous spectrum of values for c is obtained, instead of 
a single pair, is that the non-uniformity removes the degeneracy of the set of 
characteristic values of the uniform vortex sheet. In  the classical problem, there 
is a continuous set of unstable characteristic solutions corresponding to plane 
disturbances propagating in different directions, which all have the same charac- 
teristic value. The effect of the non-uniformity is to destroy the two-dimensional 
nature of the solutions and to spread the degenerate set of characteristic values 
into a continuous spectrum. 

4. Nearly uniform stream 
Although the greatest growth-rate of the disturbance is associated with large 

a,  it is of interest to find the effect of the non-uniformity of the stream for any a, 
since in a viscous fluid the disturbances of very small wavelength are suppressed 
by viscous dissipation. The non-uniformity may be expected to have its greatest 
relative effect for small a, or, more precisely, for disturbances whose wavelengths 
are greater than the length scale of variations in the main flow. 

The mean value of the stream velocity may be taken as the unit of velocity, 
so that the stream velocity may be written W = &(1+ p), where the greatest 
value of p is small compared with 1. 

To the first order in this small variation, the solution of (5) and (6) can be written 

u(1) = $sc" + E $(I)/( 1 - c ) ,  v(1) = $q) + m p q  1 - c), (19) 

in the region x > 0, and 
u(2) = $(2) v(2) = $(2) 

$xx + $2/y - a2$ = 0. 

X J  I I 7  

in the region x < 0, where and qS2) satisfy the equation 

This form of the solution is subject to the proviso that satisfies the equation 

This condition is that W must satisfy the Navier-Stokes equations in the 
region x > 0 and is in agreement with the assumption stated in the introduction, 
designed to facilitate comparison with the behaviour of a viscous fluid. 

The boundary conditions (7) and (8) to the first order become 

(33) 
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Since $ ( I )  must be bounded at y = k co and at x = + co, and $(2) must be bounded 
at y = k 00 and at x = - 03, the appropriate forms for these solutions of (21) are 

= Im f(l)(k) exp {iky - x(a2 + P)*} dk,  (24) 
-m 

Since p satisfies the equation qz + $f&, = 0, it can be written 

w = J g ( k )  exp (iky - 1~x1 dk.  (26) 

Substituting these values of $(l), $@) and p, with x = 0, in (22) and (23) and using 
the convolution theorem we find that the equations satisfied by f ( l )  and f 2 )  are 

Im exp (iky) [ - (a2 + 

-m 

(1  - c)f(l)(k) 
-m 

(27) 
I m +I {[a2+ ( I C  - n)21* - n} g ( n ) f ( l )  (k - n) dn  + (a2+ P)* [(l- c)2/c]f(2)(k) dk = 0, 

Jm exp(iky) [ ( l - c ) f ( l ) ( k ) + I m  g(n)f (1) (k-n)dn+cf(2) (k)  dk = 0. (28) 

These equations hold for ally, so the integrands must vanish. Also, the change in 
the behaviour of the unstable disturbance is required so that c can be written as 
i( 1 + i) ( 1  + E ) ,  where 8 is small and E 2  is neglected. Finally, eliminatingf@) gives 
an integral equation for f 

-m 

-m -m 1 

The possible values of E are those for which this equation has solutionf(l)(k) 
corresponding to permissible values of $(I). If f ( l )  is absolutely integrable in 
( - 00, co), the Riemann-Lebesgue theorem shows that @l) tends to zero as y 
tends to infinity. Iff (1) is unbounded at infinity, no acceptable values for $(l) are 
possible. 

To consider now a particular value for w, suppose that 
W(z, y) = A cos my exp ( - mx), 

which corresponds to a small periodic variation in the y-direction superimposed 
on the uniform stream in the region x > 0. By the use of the result 

exp (imy) = J exp (iky) 6(k - m) dk ,  
-m 

the value of g is 
g ( k )  = &l{6(k-m)+S(k+m)}, 

and the equation for C becomes the difference equation 
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If we write E = Ap, k = mn, a = nap and f(l)(lc) = P(n)  the equation has the 
simpler form 

] F(n-  1) 

+- I [  1 +  (P2+(n+1)?& -____- + --- 1 ] F(n+ 1). 
2 p2 + n2 (p2 + n2)& (33) 

For large n, the solutions of this equation behave like the solutions of 
2pF(n) = F ( n  - 1 )  + F ( n  + 1) .  (34) 

If p > 1, this equation has solutions of the form 
F(n)  = At? +Bt,", (353 

where t, and t, are the roots of t2 - 2pt + 1 = 0 and A and B are arbitrary functions 
of period 1. Since one root is greater than 1 and one is less than 1, all solutions 
are unbounded as n tends to + 00 or to - 00, and hence there are no acceptable 
values of +(I), If p < 1, the solution has the form 

(36) 

where p = cos a,  and F is not absolutely integrable in ( -00, + 00). It is clear 
from the value of g ( k )  for this example that the functions used must be inter- 
preted as generalized functions, and in this context it is sufficient for F to be 
absolutely integrable in any finite interval and to have an asymptotic form 
exp (iyn) for some real y to ensure that tends to zero as y tends to i- 00 (Light- 
hill 1958). The solution (36) has the correct asymptotic form, and the complete 
equation (33) has no singularities for finite n. Hence, any value of p < 1 gives 
acceptable values of +(l). If p = 1, a solution of (33) is F(n)  = 1, and this also 
gives an acceptable value for #l). Thus the greatest possible value of p is 1, and 
the corresponding value of c is i(1 +i) ( 1  +A) .  The maximum growth-rate of a 
disturbance is aiW,( 1 +A)  = +a max ( W f ) .  This is the same result as that obtained 
for small wavelengths in the general case (equation (17)) ,  so that for the particular 
value of W used in this section, the small-wavelength result holds for all wave- 
lengths. 

F(n)  = A cos na + B sin na, 

5. Uniform transverse shear 
The expectation that the non-uniformity should have its greatest relative 

effect for large wavelengths was not realized for the particular velocity field 
examined above, as the relative effect was found to be independent of a. An 
interesting example is provided by a linear transverse variation in the value of W ,  
and this does demonstrate a dependence on the wavelength of the disturbance. 
It is necessary, however, to limit the flow in the y-direction, since otherwise the 
velocity difference at  the vortex sheet will become indefinitely large as y tends to 
00. If the flow is confined to the region between walls at y = 0 and y = n-, 

where the distance between the walls has been taken as n- times the length scale 
and all lengths are now non-dimensional, the velocity distribution is 

W(Z, y) = K(l+ 2h(y - in)> 
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with W, the mean velocity as before, and his small compared with 1. The solution 
must now be expressed as a Fourier series instead of a Fourier integraI because of 
the limited range of y, and the conditions of boundedness at  y = 00 are replaced 
by the conditions v = 0 at y = 0 and a t  y = 7r. 

Slightly different forms of u and v are chosen for convenience, and the solutions 
of ( 5 )  and (6) are taken to be 

1 9  (37) 
m 2h sin ny 

n=O [ n n - ( l - c + @ )  
u(1) = A ,  exp { - (a2 + n2)t x }  cos ny - 

m 

n= 0 
d2) = s Bnexp {(a2 + n2)i x} cos ny, 

v(2) = 3 - B n(a 2 + n2)-* exp {(a2 + n2)t x} sin ny. 
00 

n=O 

(39) 

These solutions satisfy the conditions at y = 0 and y = 7r and at x = c co. 
It is worth noting that these are the exact solutions of ( 5 )  and (6), that is, they 
apply for any value of A. The conditions (7) and (8) which hold at  the interface 
x = 0 give 

s ~ , ( a 2  + n2)-t 1 - c + - (y - ~ 7 r )  cos ny - - sin ny 
n=O " 7r ] 7rn 2h 1 m 

00 

= s B,c(a2+n2)-*cosny, (41) 
l L = O  

m 

n=O 
= 2 - Bnc-l cos ny. (42) 

Expanding the second of these in powers of h and retaining the terms of order A, 
we get 

m m s A , ( ~ - c ) - ~  

(43) 
n=O 

If (y - +n) cos ny and sin ny are expanded as half-range Fourier cosine series and 
the coefficients of cosmy in both sides of (41) and (43) are equated, B, can be 
eliminated and an infinite set of equations for the A ,  is obtained. With 

(44) 

(45) 

4 "  

r m = o  
(y - in-) cos ny = - - C p,, cos my, 

sinny 4 
- -- - S YmnCOSmy, 

n nm=O 
the equations are 
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where S,, is the Kronecker 6 and 

pmn = (m2 + nz))i(m2 - n2)2, ymn = ll(n2- m2) if n + rn is odd, nz +- 0, 

= 1/2n2, = l / h 2  if m = 0, n odd, 
= 0, = o  otherwise. 

As before, to find the change in the behaviour of the unstable mode to order A, 
c can be replaced by +( 1 + i) (1 + Ap) and h2 neglected, and the equation for p 
is found by equating the infinite determinant of the coefficients in (46) to zero. 
To the order required, p only appears in the diagonal elements, so that the possible 
values of p are the latent roots of the matrix A ,  whose elements are given by 

It should be noted that the first row and column of this matrix are given by 
m = 0 and n = 0, respectively. 

Alternate elements in each row and column of A are zero, and it is easily proved 
that the latent roots form positive and negative pairs. The latent roots can 
therefore be found from the matrix A2, by taking both square roots of each of 
its latent roots. The standard procedure for finding the latent root of greatest 
modulus of a matrix is to multiply a column repeatedly by the matrix, the 
ratio of a particular element after n+ 1 multiplications to its value after 
n multiplications tending to the required latent root as n tends to co. 
This procedure applied to A gives elements which are alternately zero and the 
method fails, but it can be used for the matrix A2, so that the largest latent 
root of A can be found. Since the matrix is infinite, the process must be 
carried out for successively larger finite matrices until a limiting value can be 
estimated, a rough justification of this process being that the matrix elements 
decrease quite rapidly away from the leading diagonal. The largest latent root of 
A has been found by this procedure for a range of values of a and the values 
obtained have been used in constructing figure 1 .  The two extreme cases of very 
large and very small a can be dealt with separately. When a is very large 
A,, = 8pwL,ln2 and the above procedure produced the value 0.997 for the largest 
latent root. However, the root can be shown to be exactly 1, since the sum of the 
elements in each column is 

and by use of (44) with 9 = 0, this sum is 1 for all n,  so that k 1 is one pair of 
latent roots. The positive root makes the maximum growth rate &z&( 1 + A )  
and since the greatest value of W at the interface is W,( 1 + A ) ,  it  can be written 
$amax ( Wi), which again is the value for the greatest growth rate found by the 
small-wavelength approximation for any W The accuracy of the value found by 
the numerical procedure indicates that sufficient accuracy has been used for 
values of a which are not large. 

The other extreme case is when a is very small and (48) can no longer be used 
as some of the coefficients in (46) are O( l/a), so that it is not true that c is altered 
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by only a small amount even though h is small. According to (46) the determinant 
of coefficients with the largest terms retained is 

1.2 

0 

- 

0 
I 

.. , I = 0. (40) 

0 
~ 16hc2 
I --+O(c) 
I 377% 

The roots of this equation are O( 1) except for one pair which are O(h/a&) and are 
given by 

so that the maximum rate of growth when 01 is small is 0.578 ha*W,. These results 
for large and small a are combined with the numerical results for intermediate 
values of a to give figure 1, which illustrates the dependence of ci (or c,) on 01, 
for the value h = 0.2. The rate of growth for the most unstable disturbances is 
shown in figure 2, which also demonstrates how little it differs from the rate of 
growth for a uniform vortex sheet with a velocity discontinuity equal to the 
maximum velocity discontinuity of the non-uniform sheet. As was anticipated, 
the effect of the transverse variation is relatively largest for the longest waves and 
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it  increases the instability of the flow, but the effect is very small and for most 
purposes it can be said that the maximum rate of growth is proportional to the 
wave-number and to the maximum velocity difference across the sheet, which 
was also found to be true for the periodic variation considered in the previous 
section. 

0 0.1 0.2 0.3 0.4 0.5 
a 

FIGURE 3. The maximum rate of growth of disturbances, for h = 0.2. The full line gives 
the rate of growth for a uniform velocity Wo(l + A) and the broken line for A = 0. 

A less idealized approach to this problem would start with a shear layer instead 
of a vortex sheet and would include the effects of viscosity. The comparison be- 
tween the uniform vortex sheet and the uniform shear layer with and without 
viscosity, given by Esch (1957), can be used to estimate the validity of the results 
obtained here. The shear layer differs from the vortex sheet in having a cut-off 
wave-number above which the motion is stable, and a maximum rate of growth 
at  a finite wave-number. These wave-numbers decrease as the Reynolds number 
decreases and are based on the thickness of the shear layer as length scale. For 
shear layers whose thickness is much less than the distance between the walls, 
the left-hand portion of the curve in figure 2 will apply, but for large a the curve 
will bend downwards and cut the axis, giving stability beyond that point. The 
effect of viscosity will be to give a similar curve with a lower rate of growth and 
wave-number, unless the interaction of viscosity and the non-uniformity 
introduces an unexpected effect. 
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